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We calculated the temperature dependence of the Debye–Waller factors for a

variety of group IV, III–V and II–VI semiconductors from 0.1 to 1000 K. The

approach used to fit the temperature dependence is described and resulting fit

parameters are tabulated for each material. The Debye–Waller factors are

deduced from generalized phonon densities of states which were derived from

first principles using the WIEN2k and the ABINIT codes.

1. Introduction

Quantitative transmission electron microscopy (TEM) relies

on the comparison of experimental and simulated images. For

dynamical image simulation a set of material parameters are

required such as the Fourier components of Coulomb poten-

tials and Debye–Waller factors. Fourier components are

usually derived from atomic scattering amplitudes, which are

typically taken from Doyle & Turner (1968) or Weickenmeier

& Kohl (1991). Since atomic scattering amplitudes are

computed for isolated atoms they do not take into account the

redistribution of electrons due to bonds. However, accurate

Fourier components can be derived using density functional

theory (Zuo et al., 1997; Rosenauer et al., 2005). In addition to

an accurate Coulomb potential one has to take into account

the influence of the thermal vibration of the atoms. In this

respect different schemes have been developed. The most

common method uses damping factors of Bragg reflections

that contain the Debye–Waller factor (see e.g. Kittel, 1988).

Using a damping factor for the incorporation of the effect of

the temperature on the Bragg reflections is accurate for X-ray

scattering or neutron scattering, but may lead to significant

errors in the simulation of electron scattering (Rother &

Lichte, 2007). To take into account the thermal vibration of

atoms the frozen-lattice approach can be applied. In this

approach, atom configurations with atoms displaced according

to the root-mean-square (r.m.s.) displacement are generated

and the resulting TEM images are calculated using a multislice

approach. The final image is gained by averaging over all the

images (Loane et al., 1991). Since the r.m.s. displacement is

proportional to the Debye–Waller factor (see x4.1), an accu-

rate knowledge of the r.m.s. displacement or the Debye–

Waller factor is required at the temperature prevailing in the

experiment.

Experimentally, the Debye–Waller factor can be measured

using X-ray diffraction (e.g. Stahn et al., 1998) or neutron

diffraction. In both techniques it is obtained as a fit parameter.

A more direct measurement was performed by Midgley et al.

(1998) using the electron precession technique. However,

experimental values are often published for only a few

temperatures. Theoretically, the Debye–Waller factor can be

derived using lattice dynamical models (Vetelino et al., 1972)

or shell models (Reid, 1983), which rely on fitting model

parameters to experimental phonon frequencies. Recently,

Gao & Peng (1999) calculated Debye–Waller factors B for 68

elemental crystals from measured phonon densities of states

gð!Þ using the equation

B ¼
4�2h-

m

Z1
0

d! coth

�
h- !

2kBT

�
gð!Þ

!
; ð1Þ

where ! denotes the phonon frequency, T the temperature, m

the mass of the atom, h ¼ 2�h- Planck’s constant and kB

Boltzmann’s constant. Using a generalization of equation (1),

Lee & Gonze (1995) calculated the Debye–Waller factors of

SiO2 and stishovite for a computed phonon density of states.

The phonon density of states was derived from a variational

density functional perturbation theory. As for measured

Debye–Waller factors, calculated Debye–Waller factors are

often given for only a few temperatures. In order to provide

Debye–Waller factors for the whole temperature range

between 0 K and the melting temperature, Sears & Shelley

(1991) used an expansion of the coth function in equation (1)

that is valid for large and small temperatures. It was found that

this approach failed to fit Debye–Waller factors for elemental

crystals at intermediate temperatures (Gao & Peng, 1999).

Therefore, these authors used different fourth-order poly-

nomials for temperatures below and above 80 K, yielding

overall ten fit parameters per material.

In this paper we compute accurate Debye–Waller factors

for a variety of group IV, III–V and II–VI semiconductors with

the sphalerite crystal structure in the temperature range from



0.1 to 1000 K using a similar approach to that of Lee & Gonze

(1995). However, for the computation of phonon densities of

states we use the direct method of Parlinski et al. (1997). This

method is based on the harmonic approximation, which is

reviewed briefly in x2. In x3.1 we describe the computation of

phonon densities of states for the nonpolar crystals Si, Ge and

diamond. In order to take into account polarization effects,

Born effective charges were computed. Computation of Born

effective charges and their effect on phonon frequencies are

described in x3.2. In the final section the calculation of Debye–

Waller factors and an efficient fitting approach for Debye–

Waller factors are described.

2. Theory of lattice dynamics

In this section we review the theory of lattice dynamics. We

follow the derivation of Maradudin (1971) and Cochran &

Cowley (1962).

2.1. The equations of motion

In the harmonic approximation the potential energy is

expanded in terms of the atomic displacements (and the

associated electric fields in case of ionic crystals) up to

quadratic terms. Denoting by uðm; �Þ the displacement of

atom � in the primitive unit cell m from its equilibrium

position and by Eðm; �Þ the electric field at atomic position

ðm; �Þ, we can write for the potential energy value (taking H =

0 at equilibrium) (Cochran & Cowley, 1962)

HðE; uÞ ¼ 1
2

P
m;�;�; n;�;�

~VV��ðm; �; n; �Þu�ðm; �Þu�ðn; �Þ

� 1
2

P
m;�;�; n;�;�

~����ðm; �; n; �ÞE�ðm; �ÞE�ðn; �Þ

�
P

m;�;�; n;�;�

~ZZ��ðm; �; n; �ÞE�ðn; �Þu�ðm; �Þ; ð2Þ

where � and � index the components of the displacements u

and of the electric field E. ~����ðm; �; n; �Þ, ~VV��ðm; �; n; �Þ and
~ZZ�;�;�ðm; �; n; �Þ are the elements of the electronic polariz-

ability tensor, the force constant matrix and the transverse

effective charge tensor, respectively. They are connected with

the second derivatives of the energy by

~����ðm; �; n; �Þ ¼ �
@2H

@E�ðm; �Þ @E�ðn; �Þ

�����
E¼0; u¼0

; ð3Þ

~VV��ðm; �; n; �Þ ¼
@2H

@u�ðm; �Þ @u�ðn; �Þ

�����
E¼0; u¼0

; ð4Þ

~ZZ�;�ðm; �; n; �Þ ¼ �
@2H

@E�ðm; �Þ @u�ðn; �Þ

�����
E¼0; u¼0

: ð5Þ

Since the dipole moment of an atom (m; �) is given by

p�ðm; �Þ ¼ �@H=@E�ðm; �Þ; ð6Þ

the transverse effective charge [equation (5)] can be inter-

preted as the change of dipole moment of an atom (m; �) due

to the displacement of the atom (n; �). Analogously the

electronic polarizability tensor can be interpreted as the

change of the dipole moment of an atom (m; �) due to the

electric field acting on the atom (n; �). Using the energy of the

system [equation (2)], the force on an atom (o;�) is given by

F�ðo;�Þ ¼ �@H=@u�ðo;�Þ ð7Þ

and the equation of motion can be found as

M� €uu�ðm; �Þ ¼ �
P

n;�;�

~VV��ðm; �; n; �Þu�ðn; �Þ

þ
P

n;�;�

~ZZ��ðm; �; n; �ÞE�ðn; �Þ; ð8Þ

where M� is the mass of the atom �. To simplify the equations

of motion, one can exploit the periodicity of the crystal by the

Ansatz

u�ðm; �Þ ¼ ½u�ð�Þ=M�� exp½�i!t þ 2�ik � rðm; �Þ�; ð9Þ

E�ðm; �Þ ¼ E� exp½�i!t þ 2�ik � rðm; �Þ�: ð10Þ

Inserting the Ansatz into the equation of motion [equation

(8)], one finds

!2
ðkÞu�ð�Þ ¼

P
�;�

DAN
�� ð�; �; kÞu�ð�Þ

� ½1=ðM�Þ
1=2
�
P
�

Z��ð�; kÞE�; ð11Þ

with the analytical part of the dynamical matrix DAN
�� ð�; �; kÞ

DAN
�� ð�; �; kÞ ¼

P
n

½ ~VV��ðm; �; n; �Þ=ðM�M�Þ
1=2
�

� expf2�ik � ½rðn; �Þ � rðm; �Þ�g ð12Þ

and the Born effective charge tensor Z��ð�; kÞ

Z��ð�; kÞ ¼
P
n;�

~ZZ��ðm; �; n; �Þ

� expf2�ik � ½rðn; �Þ � rðm; �Þ�g: ð13Þ

2.2. Solution for nonpolar materials

For nonpolar materials, Born effective charges vanish since

no polarization is created by the displacement of atoms and,

therefore, the last term in equation (8) containing the Born

effective charges vanishes as well. Hence, equation (11)

becomes

!2ðk; �Þu�ð�; k; �Þ ¼
P
�;�

DAN
�� ð�; �; kÞu�ð�; k; �Þ; ð14Þ

where � indexes the different eigenvalues of the dynamical

matrix DAN
�� ð�; �; kÞ.

2.3. Solution for polar materials

For polar materials the last term in equation (8) does not

vanish. To derive an eigenvalue equation from equation (8),

one needs to express the electric field as a function of the

displacements of the atoms. It can be shown [Maradudin

(1971), Section VI.2.b] that the electric field is determined by
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the component of the macroscopic polarization Pk parallel to

the k vector of the phonon mode

E ¼ �ð1="0ÞPk; ð15Þ

or expressed using the k vectors

E� ¼ �ð1="0Þ
P
�

k̂k�k̂k�P�; ð16Þ

where k̂k ¼ k=jkj is the unit vector in direction of k and "0 is the

dielectric constant. The macroscopic polarization is given by

P� ¼ ð1=�0Þ
P
o;�

p�ðo;�Þ; ð17Þ

where �0 is the volume of the unit cell and Pðo;�Þ is the

dipole moment of atom (o;�) given by equation (6). Inserting

equation (2) in equation (6) and substituting the result into

equation (17) yields with the Ansatz for the dipole moment

p�ðm; �Þ ¼ p� exp½�i!t þ 2�ik � rðm; �Þ� ð18Þ

the equation for the macroscopic polarization,

P� ¼ ð1=�0Þ
P
�;�;�

���ð�; �; kÞE�

þ ð1=�0Þ
P
�;�;�

Z��ð�; kÞ½u�ð�Þ=ðM�Þ
1=2
�: ð19Þ

In equation (19) ���ð�; �; kÞ was defined as

���ð�; �; kÞ ¼
P

n

~��ðm; �; n; �Þ

� expf2�ik � ½rðn; �Þ � rðm; �Þ�g: ð20Þ

Combining the polarization in the harmonic approximation

equation (19) and equation (16) yields a relation between the

electric field and the displacement:

E� ¼ �
k̂k�

"0�0"
1
L

X
��

�X
�

k̂k�Z��ð�; kÞ

�
u�ð�Þ

M�

; ð21Þ

where "1L is given by

"1L ¼
P
��

k̂k�"
1
��k̂k� ð22Þ

and "1�� is the dielectric tensor at infinite frequency. Substi-

tuting equation (21) into the equation (11) yields

!2u�ð�Þ ¼
P
�;�

�
DAN
�� ð�; �; kÞ þDNA

�� ð�; �; kÞ
�
u�ð�Þ; ð23Þ

with the non-analytical part of the dynamical matrix

DNA
�� ð�; �; kÞ ¼

�P
� Z��ð�; kÞk̂k�

��P
� Z��ð�; kÞk̂k�

�
"0"
1
L �0ðM�M�Þ

1=2
: ð24Þ

3. Computation of dispersion relations

In order to solve the eigenvalue problem equation (23), force-

constant matrices, Born effective charges and dielectric

tensors have to be computed [equations (12) and (24)]. The

computation of the force-constant matrices will be explained

in x3.1 and the computation of Born effective charges and

dielectric tensors will be explained in x3.2.

3.1. Nonpolar materials

3.1.1. Description of the computational approach. We

calculate accurate phonon frequencies from Hellmann–

Feynman forces using the direct method of Parlinski et al.

(1997). The Hellmann–Feynman forces are computed using

the full potential linearized augmented plane wave

(FPLAPW) code WIEN2k (Blaha et al., 2001). In this code the

cell is divided into spheres (muffin-tin spheres) around the

positions of the atoms. Within the muffin-tin spheres the

potential and the wavefunctions are described by atom-like

functions and outside the spheres by plane waves. The inter-

stitial wavevector cutoff was set in such a way that RMTKmax =

7.0, where Kmax is the largest plane-wave vector and RMT is the

radius of the smallest muffin-tin sphere; radii were chosen to

obtain nearly touching spheres. The WIEN2k code works with

periodic boundary conditions.

For equation (2) to be valid we have to expand around the

equilibrium position of the atoms. Therefore we first deter-

mined the optimal lattice parameter for each semiconductor.

In Table 1 experimental lattice parameters (column 4) are

compared with lattice parameters that were computed using

the local density approximation (LDA) within the para-

metrization of Perdew & Wang (1992) of the Monte Carlo

simulations of Ceperley & Alder (1980) or the generalized

gradient approximation (GGA) of Perdew et al. (1996) as the

exchange and correlation part of the potential (columns 2 and

3). The comparison shows clearly that lattice parameters

computed using LDA/GGA are smaller/larger than the

experimental lattice parameters, which is in line with the often

observed over/under-binding of LDA/GGA.

Using the optimized lattice parameter, a supercell was

generated for each inequivalent atom in the asymmetric unit.

The inequivalent atoms were displaced by about 4 pm in one

direction. Owing to the cubic symmetry of the nonpolar

semiconductors it was sufficient to displace the inequivalent

atom in the x direction only. In order to get rid of residual

forces that arise due to not perfectly optimized lattice para-

meters, the displacements were performed in positive and

negative directions. For each of the supercells described, the

Hellmann–Feynman forces due to the displacement of the

inequivalent atom on all the other atoms in the supercell were

computed using the WIEN2k code and symmetrized with

respect to the displacements in the opposite directions. From

the Hellmann–Feynman forces the corresponding displace-

ment force-constant matrices were derived using the

PHONON program of Parlinski et al. (1997). The force-

constant matrices characterize the strength of the bond

between two atoms. Dynamical matrices of the crystal

[equation (14)] were approximated with the dynamical matrix

of the supercell. [For a detailed discussion see Parlinski et al.

(1997).]

In principle, one should calculate the dynamical matrix of

the infinite crystal, but as long as the interaction range is
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confined to the interior of the supercells, the dynamical

matrices of the supercells can be used to approximate the

dynamical matrices of the infinite crystal. In order to take care

that the interaction range was enclosed in the supercell, we

always checked that the Hellmann–Feynman forces dropped

several orders of magnitude with increasing distance between

interacting atoms. The respective phonon frequency !ðk; �Þ
for a phonon wavevector k and branch � can be derived by

solving the eigenvalue problem

equation (14) with the dynamical

matrix.

3.1.2. Convergence studies for
Ge. In the following we will present

for Ge studies of the convergence

of the phonon frequencies with

respect to the number of k points,

the magnitude of the displacement

vector and the size of the set of

supercells.

Fig. 1 shows the phonon disper-

sion relation of Ge derived from

force constants computed using 100

and 800 k points in the full Bril-

louin zone. For the calculation a

1 � 1 � 1 supercell was used. The

green line corresponds to 100 k

points and the fat black line

surrounding the green line corre-

sponds to 800 k points. The fact that

the black line perfectly surrounds

the green line already shows that

100 k points are sufficient to get a

good dispersion relation. For

comparison, experimental phonon

frequencies (Nilsson & Nelin, 1971) are shown as red dots in

Fig. 1.

From Fig. 2, one immediately sees that the magnitude of the

displacement vector hardly affects the phonon frequencies.

Small deviations are visible only for a rather large displace-

ment of 16 pm. The experimental frequencies (red dots) are

taken from Nilsson & Nelin (1971). As already mentioned, the

dynamical matrix of the supercell should resemble the dyna-

mical matrix of the whole crystal. Therefore, the phonon

research papers
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Figure 1
Comparison of phonon dispersion relations of Ge computed within the
LDA using different numbers of k vectors with measured phonon
frequencies (red dots). The green (black) curve shows the results using
100 (800) k points in the full Brillouin zone for the computation of the
Hellmann–Feynman forces. The computation was performed on a
1 � 1 � 1 supercell.

Table 1
Comparison of the lattice parameter a (Å) computed with the WIEN2k code and with the ABINIT code
using the LDA and the GGA, respectively, with the experimental lattice parameter.

WIEN2k
Experimental

ABINIT

Material aLDA aGGA aexp aLDA aGGA

AlN 4.352 4.406 4.380 4.312 4.404
AlP 5.440 5.513 5.467 5.412 5.508
AlAs 5.633 5.732 5.661 5.622 5.749
AlSb 6.116 6.217 6.136 6.076 6.232
GaN 4.460 4.545 4.500 4.321 4.523
GaP 5.396 5.507 5.450 5.321 5.506
GaAs 5.612 5.752 5.654 5.536 5.758
GaSb 6.050 6.214 6.096 5.964 6.207
InN 4.945 5.042 4.980 4.911 5.010
InP 5.831 5.959 5.870 5.824 5.950
InAs 6.038 6.186 6.058 6.016 6.180
InSb 6.448 6.634 6.479 6.419 6.613
MgS 5.604 5.713 5.622 5.582 5.686
MgSe 5.880 6.008 5.890 5.866 5.994
MgTe 6.383 6.524 6.420 6.351 6.502
ZnS 5.313 5.457 5.410 5.335 5.486
ZnSe 5.586 5.746 5.670 5.581 5.779
ZnTe 6.020 6.197 6.103 5.986 6.191
CdS 5.769 5.933 5.820 5.817 5.994
CdSe 6.018 6.197 6.080 6.065 6.264
CdTe 6.422 6.627 6.482 6.424 6.651
C 3.546 3.582 3.567 3.524 3.566
Si 5.408 5.477 5.431 5.384 5.469
Ge 5.626 5.762 5.658 5.577 5.776

Figure 2
Comparison of the phonon dispersion relation of Ge computed within the
LDA for different moduli of the displacement of the inequivalent atoms
with measured phonon frequencies (red dots). The black (blue, green,
cyan) curve shows the phonon dispersion curve for a displacement of 2 (4,
8, 16) pm.



frequencies should depend on the size of the supercell. Clear

deviations from the experimental phonon frequencies can

already be observed in Figs. 1 and 2, e.g. close to the L point.

In Fig. 3, phonon dispersion relations computed from

1 � 1 � 1, 2 � 2 � 2 and 3 � 3 � 3 supercells are compared

with a measured phonon dispersion relation (Nilsson & Nelin,

1971). For the 1 � 1 � 1 supercell significant deviations from

the measured phonon frequencies can be observed, but

already the 2 � 2 � 2 supercell shows reasonable agreement

between measurement and experiment. The agreement is even

better for the 3 � 3 � 3 supercell. However, due to the high

computational effort of the large 3 � 3 � 3 supercell we

restricted the calculations to 2 � 2 � 2 supercells.

3.2. Polar semiconductors

3.2.1. Description of the computational approach. In order

to take into account polarization, knowledge of Born effective

charges and dielectric tensors is needed [see equation (24)].

We computed both using the ABINIT code (Gonze et al.,

2002). The ABINIT code allows the computation of Born

effective charges and dielectric tensors based on a variational

density functional perturbation theory approach (Gonze &

Lee, 1997). In contrast to the WIEN2k code, the ABINIT code

is not an all-electron code and therefore uses pseudopotentials

in the vicinity of the cores of the atoms. We used norm-

conserving pseudopotentials generated according to the

Troullier–Martins scheme (Troullier & Martins, 1991) with the

FHI code provided on the web page of the ABINIT code at

http://www.abinit.org.

We started the computation of Born effective charges and

dielectric tensors by optimization of the lattice parameters

using the ABINIT code. We computed total energies for a

series of lattice parameters. Total energies were fitted in the

vicinity of their minima using a parabola. The minima were

used as the lattice parameters for the computation of Born

effective charges and dielectric tensors. These lattice para-

meters are found in columns 5 and 6 in Table 1. Typically,

lattice parameters were overestimated by approximately 1.5%

when the GGA was used and they were underestimated by

1.2% when the LDA was used. (We used the same para-

metrizations of the exchange and correlation potentials for

computations in ABINIT as for computations in WIEN2k.)

Using the optimized lattice parameters we computed Born

effective charges for different energy cutoffs of the plane-

wave expansion. For most materials, an energy cutoff of about

24 Ha was sufficient to converge the Born effective charges to

at least three digits. To check the quality of the convergence of

the computation several sum rules can be checked: according

to Gonze & Lee (1997) the charge neutrality in one unit cell

must also be fulfilled for the Born effective charges, i.e.

P
�

Z��ð�; kÞ ¼ 0: ð25Þ

Another rule that can be checked within the ABINIT code is

the f-sum rule, which should result in 1 (Gonze & Lee, 1997).

In Tables 2 and 3 the computed Born effective charges for k

= 0 and dielectric constants computed within the LDA and the

GGA, respectively, are given. The Born effective charges are

given for both anions and cations to show the fulfilment of the

sum rule for Born effective charges [equation (25)]. Addi-

tionally, the difference �f-sum of the obtained f-sum rule from 1

is also displayed. The deviation from the f-sum rule |�f-sum|

was for most materials below 3 � 10�4 apart from the Zn

compounds and InN. Therefore, further computation using

cutoff energies up to about 40 Ha were performed for these

two materials resulting in the Born effective charges and the

�f-sum values given in the tables for these materials.

Our results are compared with experimental and calculated

values (de Gironcoli et al., 1989) for a series of III–V semi-

conductors in Figs. 4 and 5. Fig. 4 shows Born effective charges

computed using the LDA and the GGA as a function of

measured Born effective charges. From this figure it becomes

evident that our computations within the LDA are situated

closer to the experimental values than the LDA computations

of de Gironcoli et al., but a larger difference between our

GGA values and the experimental ones can be observed. A

similar plot for the dielectric constants is shown in Fig. 5.

Deviations between experimental values and our computed

values can be observed. The deviations are partly caused by

the approximation of the exchange and correlation part of the

potential, which is not known exactly. This statement is

supported by the fact that the values that were computed with

different approximations for the exchange and correlation

potentials deviate significantly for the same materials

(compare the LDA and GGA values in Fig. 5). Another reason

is the choice of pseudopotentials, which approximate the

potential in the regions close to the atom cores. Comparison of

the results of de Gironcoli et al. with ours shows that the values

that were computed using different pseudopotentials deviate

as well (compare the LDA and de Gironcoli et al. values).
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Figure 3
Comparison of the phonon dispersion relation of Ge computed within the
LDA for different supercell sizes with measured phonon frequencies (red
dots). The black (blue, green) curve shows the phonon dispersion curves
for a 1 � 1 � 1 (2 � 2 � 2, 3 � 3 � 3) supercell. The computed phonon
frequencies become more accurate for larger supercells.



3.2.2. Phonon dispersion relations of polar materials. Fig. 6

compares computed (LDA) phonon dispersion relations for

GaAs with experimental phonon frequencies taken from

Strauch & Dorner (1990). The computations were first carried

out taking into account the polarization in the crystal (black

line) and then the polarization was neglected by setting the

Born effective charges to zero (green line). For the compu-

tation of the Hellmann–Feynman forces 2 � 2 � 2 supercells

were used and the inequivalent atoms were displaced by 4 pm

(see also x3.1.2). From Fig. 6 it can be seen that due to the

polarization the optical phonons split into two different

branches at the centre of the Brillouin zone (� point), i.e. the

splitting of the longitudinal optical mode and the transverse

optical modes (LO–TO splitting). The calculation where the

polarization is taken into account better resembles the

experimental phonon frequencies.
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Table 2
Born effective charges for k = 0 and dielectric constants calculated using
the LDA as the exchange and correlation part of the potential.

The residuum between the computed sum rule and 1 is also given, which
reflects the precision of the calculation.

Material Zcation Zanion "1 �f-sum

AlN 2.54 �2.54 4.47 6.8e�6
AlP 2.22 �2.22 8.31 �1.3e�5
AlAs 2.13 �2.13 9.38 2.8e�8
AlSb 1.82 �1.82 11.62 �1.6e�5
GaN 2.64 �2.64 4.97 7.6e�6
GaP 2.1 �2.1 10.01 �1.5e�5
GaAs 2.05 �2.05 12.25 �5.8e�6
GaSb 1.62 �1.62 16.36 4.5e�5
InN 2.95 �2.94 12.04 �2.1e�5
InP 2.56 �2.56 11.32 �6.0e�5
InAs 2.57 �2.57 17.39 1.8e�4
InSb 2.24 �2.24 20.05 2.6e�4
MgS 1.85 �1.85 4.15 �1.2e�5
MgSe 1.86 �1.86 4.74 �2.2e�5
MgTe 1.88 �1.88 5.68 �2.1e�5
ZnS 1.96 �1.96 6.36 �5.5e�5
ZnSe 2 �1.99 7.63 �5.8e�5
ZnTe 1.92 �1.91 9.53 �5.8e�5
CdS 2.23 �2.23 7.05 �7.1e�5
CdSe 2.3 �2.29 9.06 �9.4e�5
CdTe 2.19 �2.19 9.92 �8.3e�5
C 0 0 5.71 �1.4e�5
Si 0 0 13.18 1.5e�6
Ge 0 0 19.50 2.8e�4

Table 3
Born effective charges for k = 0 and dielectric constants calculated using
the GGA as the exchange and correlation part of the potential.

The residuum between the computed sum rule and 1 is also given, which
reflects the precision of the calculation.

Material Zcation Zanion "1 �f-sum

AlN 2.55 �2.54 4.59 3.6e�7
AlP 2.25 �2.25 8.14 �1.4e�5
AlAs 2.15 �2.15 9.63 �3.8e�7
AlSb 1.85 �1.85 12.29 �2.0e�5
GaN 2.71 �2.71 5.69 3.4e�6
GaP 2.32 �2.32 10.44 �1.9e�5
GaAs 2.30 �2.30 14.83 �3.6e�6
GaSb 1.95 �1.96 22.47 3.3e�4
InN 2.98 �2.97 14.37 4.5e�5
InP 2.67 �2.67 11.54 �6.9e�5
InAs 2.71 �2.70 20.33 2.5e�4
InSb 2.45 �2.44 25.57 4.2e�4
MgS 1.89 �1.89 4.01 �1.5e�5
MgSe 1.90 �1.90 4.63 �2.1e�5
MgTe 1.94 �1.93 5.56 �1.9e�5
ZnS 2.08 �2.08 6.12 �5.7e�5
ZnSe 2.16 �2.16 7.57 �6.3e�5
ZnTe 2.13 �2.12 9.51 �6.4e�5
CdS 2.32 �2.32 6.60 �7.6e�5
CdSe 2.40 �2.40 8.57 �9.6e�5
CdTe 2.37 �2.37 9.75 �9.2e�5
C 0 0 5.80 �1.7e�5
Si 0 0 13.05 1.6e�6
Ge 0 0 29.07 1.0e�3

Figure 4
Computed absolute values of Born effective charges for some III–V
semiconductors plotted versus experimental values taken from de
Gironcoli et al. (1989). Born effective charges computed using the LDA
(GGA) are shown in blue (green). The values are compared to the
computed values of de Gironcoli et al. (1989) (red circles).

Figure 5
Computed "1 for some III–V semiconductors plotted versus
experimental values taken from de Gironcoli et al. (1989). "1 computed
using the LDA (GGA) are shown in blue (green). The values are
compared to the computed values of de Gironcoli et al. (1989) (red
circles).



4. Calculation of Debye–Waller factors

In this section the calculation of Debye–Waller factors is

described. We use a generalized form of equation (1).

Therefore, we review in x4.1 how the generalized form of

equation (1) can be derived. In xx4.2 and 4.3 we describe the

calculation of Debye–Waller factors and the fitting procedure.

4.1. Generalized phonon density of states and Debye–Waller
factor

For TEM simulations the Coulomb potential of the material

under investigation is needed and usually the Coulomb

potential is written as a Fourier series with Fourier compo-

nents Vhkl calculated as

Vhkl /
P
�

f hkl
� exp½2�ighkl � rð�Þ�; ð26Þ

where f hkl
� are the atomic scattering factors for atom � and the

reflection ghkl. Atomic scattering factors are typically taken

from e.g. Doyle & Turner (1968) or Weickenmeier & Kohl

(1991). However, such a potential is unrealistic and does not

even correspond to the potential at a temperature of 0 K

because of the zero-point motion of the atoms. In order to

take into account a finite temperature of the system, one can

assume a time-dependent potential (Kittel, 1988). Then the

position of the atom rð�Þ becomes time dependent and we

substitute rð�Þ by rð�; tÞ ¼ rð�Þ þ uð�; tÞ with uð�; tÞ being the

displacement of the atom from its equilibrium position.

Averaging the potential over time yields

hVhklit /
P
�

f hkl
� exp½2�ighkl � rð�Þ�hexp½2�ighkl � uð�; tÞ�it;

ð27Þ

where the index t denotes that the averaging is performed over

time. Following the derivation in Kittel (1988), we find

hVhklit /
P
�

f hkl
� exp½2�ighkl � rð�Þ�

� exp
�
�2�2

P
��

ghkl
� hu�ð�; tÞu�ð�; tÞitg

hkl
�

�
: ð28Þ

In the following we will focus on the quantity hu�ð�; tÞu�ð�; tÞit ,

which equals the static correlation function hu�ð�Þu�ð�Þi
because of the time translation invariance. Using the ergodic

hypothesis we replace the time average by an ensemble

average. The static correlation function can be derived by

expanding the displacements into the normal coordinates

Qðk; �Þ,

u�ðm; �Þ ¼
1

NðM�Þ
1=2

X
k;�

u�ð�; k; �Þ exp½2�ik � rðmÞ�Qðk; �Þ:

ð29Þ

Using this expansion for building up the Lagrangian of the

system yields a harmonic oscillator equation for the normal

coordinates:

€QQðk; �Þ þ !2
ðk; �ÞQðk; �Þ ¼ 0: ð30Þ

Interpreting now the normal coordinates Qðk; �Þ as quantum-

mechanical operators and writing them in terms of creation

and annihilation operators yields

Qðk; �Þ ¼ ½h- =2!ðk; �Þ�1=2
½aðk; �Þ þ ayðk; �Þ�: ð31Þ

Using the expansion equation (29) one can find for the

correlation function

hu�ð�Þu�ð�Þi ¼
h-

4NM�

X
k;�

e�ð�; k; �Þe��ð�; k; �Þ

!ðk; �Þ
½nðk; �Þ þ 1

2�;

ð32Þ

where nðk; �Þ ¼ haðk; �Þayðk; �Þi is the average number of

phonons in the mode characterized by the wavevector k and

branch �. The average number of phonons nðk; �Þ is given by

the Bose–Einstein distribution

nðk; �Þ ¼
1

exp½h- !ðk; �Þ=ðkBTÞ� � 1
: ð33Þ

Substituting the Bose–Einstein distribution equation (33) into

equation (32) yields for the static correlation function

hu�ð�Þu�ð�Þi ¼
h-

2NM�

X
k;�

e�ð�; k; �Þe��ð�; k; �Þ

!ðk; �Þ

� coth

�
h- !ðk; �Þ

2kBT

�
: ð34Þ

Introducing an integral over the frequency, equation (34) can

be rewritten as

hu�ð�Þu�ð�Þi ¼
h- r

2M�

Z1
0

d!
cothðh- !=2kBTÞ

!
g��ð�;!Þ; ð35Þ

where r is the number of phonon branches and g��ð�;!Þ is the

generalized phonon density of states given by
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Figure 6
Comparison of phonon dispersion relations for GaAs with experimental
phonon frequencies. The black line shows the result where the
polarization was taken into account using the computed Born effective
charges. The green line shows the result when the polarization is
neglected, i.e. the Born effective charges have been assumed to be zero.



g��ð�;!Þ ¼ ð1=�!rÞ
P
k;�

e�ð�; k; �Þe��ð�; k; �Þ	�!½!� !ðk; �Þ�;

ð36Þ

with N the number of phonon wavevectors k and �! the

width of the frequency channel of the function 	�!ð!Þ that is

defined as

	�!ð!Þ ¼

(
1 ��!=2<! � �!=2

0 otherwise
: ð37Þ

On comparing equation (1) with equation (35) one can easily

see the similarity between the equations. The advantage of

equation (35) is that one can derive static correlation functions

for all atoms in polyatomic materials such as the III–V and II–

VI semiconductors. In general, the static correlation function

is a matrix for each atom. However, in the case of the cubic

materials under investigation here, the diagonal terms should

be the same and the off-diagonal terms should be zero.

Therefore, the matrix of the static correlation function is just a

scalar value for each atom, often called also the r.m.s.

displacement.

The relation between the Debye–Waller factor B��ð�Þ and

the correlation function hu�ð�Þu�ð�Þi follows from writing the

exponential damping factor in equation (28) as exp½�1
4gBð�Þg�:

B��ð�Þ ¼ 8�2
hu�ð�Þu�ð�Þi: ð38Þ

Note that in our derivations we defined vectors in reciprocal

space as |g| = 1/d, where d is a distance in real space.

4.2. Calculation of Debye–Waller factors

To calculate Debye–Waller factors we first calculated

generalized phonon densities of states. From the definition of

the generalized phonon density of states [equation (36)] one

can see that there are two quantities that are not prede-

termined. These are the number of phonon wavevectors and

the frequency channel width �! [see equation (37)] in which

the phonon energies are sorted when the generalized phonon

density of states is evaluated. The convergence studies with

respect to the frequency channel width and the number of k

vectors is done for the example of Ge in the following.

Fig. 7 shows a comparison of phonon densities of states,

which were derived using a channel width of �! = 0.1 THz

and different numbers N of phonon k vectors. The number of

k vectors was increased from 100 to 800 then to 3200. The

phonon density of states becomes less and less noisy on

increasing the number of k vectors. In Fig. 8 different phonon

density of states are shown for which the frequency channel

width varied. The number of phonon k vectors for each

channel width was optimized in a similar way as in Fig. 7. Note

that many more k points were needed for smaller frequency

channel widths. The number of k points used for the calcula-

tion of the phonon density of states with a frequency channel

width of 0.01 THz was 64 000. The frequency channel widths

were 0.5, 0.1, 0.05 and 0.01 THz. It becomes clear that in order

to get the high peak at the optical phonons a width of 0.01 THz

has to be used. For the different components of the general-

ized phonon density of states similar results were found.

We also checked the convergence of the Debye–Waller

factors with respect to the number of k points and the

frequency channel width. For the optimized number of k

points for the channel widths of 0.05 and 0.01 THz we found

that the Debye–Waller factors computed using these channel

widths deviated by about 0.054% for Ga and about 0.066% for

As at a temperature of about 300 K.

Fig. 9 shows the static correlation function hu1u1i computed

from the g11 component of the generalized phonon density of

states using equation (35) and a frequency channel width �!
= 0.5 THz for different numbers of k vectors. With increasing

number of k vectors the static correlation functions g11 lie

closer together. In Fig. 10 the 11, 22 and 33 components of the
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Figure 8
Comparison of phonon density of states (PDOS) for Ge calculated for
different frequency channel widths. The number of phonon wavevectors
was converged for each phonon frequency channel.

Figure 7
Comparison of phonon density of states (PDOS) for Ge calculated for
different numbers of phonon wavevectors k for a width of the frequency
channel of 0.1 THz.



static correlation function are compared for a calculation

where frequency channel widths of 0.01 and 0.5 THz were

used. For the two different frequency channel widths the

number of phonon k vectors was optimized as discussed

above. One can see that the different components for a

channel width of 0.5 THz deviate clearly from each other. The

deviation increases with increasing temperature. Note that

due to symmetry all the components should be the same. For

the frequency channel width of 0.01 THz deviations can hardly

be detected in Fig. 10. For the calculation of the Debye–Waller

factors for the other materials we took a frequency channel

width of 0.01 THz and 100 000 k points. We always checked

that the deviations between the different components of the

Debye–Waller factors at the maximum temperature of 1000 K

were smaller than 0.1%.

4.3. Parametrizing the Debye–Waller factors

In the following we describe how we fitted the temperature

dependence of the static correlation functions to a model

curve. For the contribution of phonons e.g. to the specific heat

one usually uses the Einstein model for the phonon density of

states (Einstein, 1911). The Einstein model mainly describes

the optical phonons, since it approximates the phonon density
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Figure 10
Static correlation function hu1u1i as a function of the temperature
calculated from generalized phonon density of states derived for different
channel widths for an optimized number of phonon k vectors.

Figure 9
Static correlation function hu1u1i as a function of the temperature
calculated from generalized phonon density of states derived for a
channel width of 0.5 THz and for different numbers of phonon k vectors.

Figure 12
Temperature dependence of the characteristic frequency !c. The blue line
is a fit with a Gaussian to the characteristic frequency. The fit shows some
small deviations, which are not crucial, since they do not affect the fit of
the static correlation function very much (see Fig. 13).

Figure 11
Static correlation function hu1u1i as a function of temperature for Ge and
the corresponding fit with the Einstein model for the phonon density of
states. The static correlation function is well fitted for temperatures above
100 K, but for temperatures below 100 K clear discrepancies between the
fit and the calculated values can be observed.



of states by a delta function at the Einstein frequency !E.

Using the Einstein model of the phonon density of states

yields for the static correlation function equation (35)

hu2
ð�; TÞi ¼

h-

2M�

coth½h- !Eð�Þ=2kBT�

!Eð�Þ
; ð39Þ

where we assumed that the different diagonal components of

the static correlation function were all the same and the off-

diagonal elements are zero. Fig. 11 compares the static

correlation function calculated for Ge with a fit using the

Einstein model. For the fit we assumed the Einstein frequency

!Eð�Þ as a fit variable. For higher temperatures the tempera-

ture dependence of the static correlation function is very good,

but for lower temperatures some deviations occur. Therefore,

we solve the integral in equation (35) formally by using the

mean-value theorem and exploit the normalization of the

phonon density of states. This yields

hu2ð�; TÞi ¼
h-

2M�

coth½h- !cð�; TÞ=2kBT�

!cð�;TÞ
; ð40Þ

where now the Einstein frequency is substituted by the char-

acteristic frequency, which is temperature dependent. The

temperature dependence of the characteristic frequency is

shown in Fig. 12. We fit the temperature dependence of the

characteristic frequency using the Gaussian

!cð�; TÞ ¼ A expð�T2=
2
Þ þ B; ð41Þ

yielding three fit parameters: A, B and 
. The fit of the char-

acteristic frequency with the Gaussian is shown in Fig. 12 as

well. One can clearly see that the fit is not perfect. However, it

is not our intention to fit the characteristic frequency, but the
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Table 4
Fit parameters for the temperature dependence of the characteristic
frequency !c derived from Hellmann–Feynman forces computed using
the LDA.

Material Element A B 


AlN Al 7.516651e+012 6.132446e+013 1.285515e+002
N 1.479155e+013 8.570636e+013 1.654690e+002

AlP Al 7.386804e+012 3.608380e+013 7.785658e+001
P 7.193599e+012 3.543605e+013 7.580339e+001

AlAs Al 9.644435e+012 3.337473e+013 6.719608e+001
As 3.193684e+012 2.101611e+013 4.676239e+001

AlSb Al 1.080553e+013 2.830932e+013 5.446165e+001
Sb 2.035262e+012 1.397949e+013 3.124928e+001

GaN Ga 3.584761e+012 3.511461e+013 7.602315e+001
N 2.046591e+013 8.103009e+013 1.451238e+002

GaP Ga 3.118889e+012 2.273464e+013 5.118278e+001
P 1.035200e+013 3.687135e+013 7.262717e+001

GaAs Ga 4.155864e+012 2.035401e+013 4.479912e+001
As 4.774990e+012 2.119684e+013 4.544807e+001

GaSb Ga 4.718997e+012 1.735948e+013 3.728892e+001
Sb 2.910703e+012 1.412438e+013 3.162801e+001

InN In 2.465003e+012 2.138380e+013 4.718032e+001
N 2.380055e+013 6.237666e+013 1.085171e+002

InP In 1.920652e+012 1.479984e+013 3.447010e+001
P 1.167324e+013 3.091414e+013 5.888034e+001

InAs In 2.496191e+012 1.300065e+013 3.026860e+001
As 5.458328e+012 1.748737e+013 3.689434e+001

InSb In 2.922115e+012 1.120398e+013 2.559933e+001
Sb 3.392591e+012 1.173299e+013 2.609895e+001

MgS Mg 3.358631e+013 2.382342e+013 3.202308e+001
S 3.756643e+013 1.668628e+013 2.195164e+001

MgSe Mg 2.427056e+013 2.616853e+013 3.740816e+001
Se 2.261965e+013 1.273507e+013 1.974979e+001

MgTe Mg 9.088783e+012 2.311195e+013 4.466514e+001
Te 1.478982e+012 1.085741e+013 2.508424e+001

ZnS Zn 2.700108e+012 2.042631e+013 4.671562e+001
S 9.558977e+012 3.335897e+013 6.587750e+001

ZnSe Zn 3.574733e+012 1.826960e+013 4.072422e+001
Se 4.331065e+012 1.906187e+013 4.108036e+001

ZnTe Zn 4.084093e+012 1.650445e+013 3.557737e+001
Te 2.716218e+012 1.351366e+013 3.013417e+001

CdS Cd 1.681754e+012 1.216706e+013 2.911171e+001
S 1.128410e+013 2.585141e+013 4.959817e+001

CdSe Cd 2.183634e+012 1.087505e+013 2.600495e+001
Se 5.094080e+012 1.477335e+013 3.164524e+001

CdTe Cd 2.467077e+012 1.006627e+013 2.339060e+001
Te 3.146102e+012 1.078845e+013 2.410573e+001

C C 1.697695e+013 1.470958e+014 2.798910e+002
Si Si 8.249187e+012 3.749824e+013 7.990406e+001
Ge Ge 4.860505e+012 2.060473e+013 4.442509e+001

Table 5
Fit parameters for the temperature dependence of the characteristic
frequency !c derived from Hellmann–Feynman forces computed using
the GGA.

Material Element A B 


AlN Al 7.126538e+012 5.989830e+013 1.253481e+002
N 1.399117e+013 8.387930e+013 1.614885e+002

AlP Al 7.451218e+012 3.530067e+013 7.426703e+001
P 7.455530e+012 3.480381e+013 7.238263e+001

AlAs Al 9.002114e+012 3.322708e+013 6.673131e+001
As 3.078957e+012 2.107757e+013 4.656689e+001

AlSb Al 1.030702e+013 2.815009e+013 5.417596e+001
Sb 1.976805e+012 1.396697e+013 3.120939e+001

GaN Ga 3.294616e+012 3.367822e+013 7.288966e+001
N 1.856878e+013 7.790741e+013 1.391941e+002

GaP Ga 2.937376e+012 2.220311e+013 4.978109e+001
P 9.798406e+012 3.626020e+013 7.095718e+001

GaAs Ga 3.749035e+012 1.944495e+013 4.274642e+001
As 4.431789e+012 2.048469e+013 4.360005e+001

GaSb Ga 4.271114e+012 1.648987e+013 3.531536e+001
Sb 2.717532e+012 1.354364e+013 3.003625e+001

InN In 2.210383e+012 2.062922e+013 4.539599e+001
N 2.089763e+013 6.025402e+013 1.045041e+002

InP In 1.819756e+012 1.449039e+013 3.370622e+001
P 1.101337e+013 3.042639e+013 5.772974e+001

InAs In 2.311641e+012 1.252242e+013 2.919999e+001
As 5.109508e+012 1.696141e+013 3.568273e+001

InSb In 2.531195e+012 1.089449e+013 2.476549e+001
Sb 3.048071e+012 1.158120e+013 2.541961e+001

MgS Mg 3.368866e+013 1.804278e+013 2.221087e+001
S 3.556272e+013 1.315734e+013 1.575921e+001

MgSe Mg 2.525422e+013 2.111280e+013 2.867660e+001
Se 2.181639e+013 9.347292e+012 1.241036e+001

MgTe Mg 8.195843e+012 2.307651e+013 4.442016e+001
Te 1.459614e+012 1.099478e+013 2.494851e+001

ZnS Zn 2.365691e+012 1.941894e+013 4.432231e+001
S 8.556468e+012 3.228860e+013 6.309353e+001

ZnSe Zn 3.099511e+012 1.716127e+013 3.827153e+001
Se 3.959340e+012 1.828798e+013 3.899340e+001

ZnTe Zn 3.514113e+012 1.546216e+013 3.346367e+001
Te 2.469776e+012 1.293880e+013 2.865071e+001

CdS Cd 1.537492e+012 1.185226e+013 2.795118e+001
S 1.009356e+013 2.541131e+013 4.813208e+001

CdSe Cd 1.909526e+012 1.060040e+013 2.523488e+001
Se 4.589196e+012 1.464986e+013 3.097980e+001

CdTe Cd 1.826297e+012 1.527735e+013 2.902601e+001
Te 1.536967e+012 1.400198e+013 2.692230e+001

C C 1.643526e+013 1.444227e+014 2.742977e+002
Si Si 7.955010e+012 3.801102e+013 8.020465e+001
Ge Ge 4.557722e+012 1.980667e+013 4.247595e+001



static correlation function. Inserting equation (41) into equa-

tion (40) yields a relationship between the hu2ð�; TÞi and the

parameters A, B and 
:

hu2
ð�; TÞi ¼

h-

2M�

cothfh- ½A expð�T2=
2Þ þ B�=2kBTg

½A expð�T2=
2Þ þ B�
: ð42Þ

Using equation (42) and optimizing the parameters A, B and


, the curve shown as a line in Fig. 13 can be generated.

Additionally Fig. 13 depicts the temperature dependence of

the static correlation function as calculated from equation

(35). Fig. 13 shows a very good agreement of the fit with the

calculated values.

In Tables 4 and 5 fit parameters for the temperature

dependence of the characteristic frequency of II–VI, III–Vand

group IV semiconductors are listed. As mentioned in x3.1.1,

the bond length is underestimated in the LDA and over-

estimated in the GGA. This should also be the case for the

Debye–Waller factors (Vila et al., 2007). However, we

compared our computed phonon dispersion relations with

measured ones for GaP (Kunc et al., 1975), GaAs (Strauch &

Dorner, 1990), GaSb (Farr et al., 1975), InP (Borcherds et al.,

1975), InSb (Banerjee & Varshni, 1969), ZnS (Vagelatos et al.,

1974), ZnSe (Hennion et al., 1971), ZnTe (Vagelatos et al.,

1974), CdTe (Rowe et al., 1974), diamond (Warren et al., 1967),

Si (Nilsson & Nelin, 1972) and Ge (Nilsson & Nelin, 1971). For

the III–V and group IV materials our LDA results are in much

better agreement than the GGA calculations, but for the II–VI

compounds the opposite is true. Since the Debye–Waller

factors were derived from the computed phonon frequency

this should also hold for the Debye–Waller factors. Therefore
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Table 6
Mean-square displacements hu2ð�; TÞi (Å2) for selected temperatures computed within the LDA for III–V and group IV materials and within the GGA
for II–VI materials.

Temperature (K)

Material Element 0.001 100 200 400 600 800 1000

AlN Al 1.710e�3 1.827e�3 2.284e�3 3.636e�3 5.161e�3 6.741e�3 8.343e�3
N 2.256e�3 2.359e�3 2.727e�3 3.897e�3 5.313e�3 6.819e�3 8.368e�3

AlP Al 2.707e�3 3.527e�3 5.421e�3 9.833e�3 0.014448 0.01912 0.023817
P 2.405e�3 3.159e�3 4.877e�3 8.87e�3 0.013042 0.017264 0.021508

AlAs Al 2.736e�3 3.932e�3 6.225e�3 0.011433 0.016847 0.022319 0.027815
As 1.751e�3 2.999e�3 5.287e�3 0.010184 0.015165 0.020168 0.02518

AlSb Al 3.009e�3 5.047e�3 8.391e�3 0.015749 0.023319 0.030948 0.038601
Sb 1.629e�3 3.808e�3 7.152e�3 0.014061 0.021023 0.027998 0.034979

GaN Ga 1.177e�3 1.452e�3 2.208e�3 4.011e�3 5.899e�3 7.809e�3 9.729e�3
N 2.234e�3 2.427e�3 2.916e�3 4.282e�3 5.889e�3 7.587e�3 9.328e�3

GaP Ga 1.762e�3 2.825e�3 4.895e�3 9.373e�3 0.01394 0.01853 0.02313
P 2.171e�3 2.966e�3 4.547e�3 8.217e�3 0.012063 0.015959 0.019876

GaAs Ga 1.858e�3 3.397e�3 6.038e�3 0.011658 0.017368 0.023101 0.028844
As 1.632e�3 2.949e�3 5.201e�3 0.010014 0.014909 0.019827 0.024754

GaSb Ga 2.063e�3 4.483e�3 8.197e�3 0.015973 0.02384 0.031731 0.039631
Sb 1.531e�3 3.734e�3 7.010e�3 0.013776 0.020595 0.027427 0.034266

InN In 1.160e�3 1.905e�3 3.338e�3 6.422e�3 9.560e�3 0.012713 0.015872
N 2.631e�3 3.177e�3 4.214e�3 6.780e�3 9.622e�3 0.012562 0.015544

InP In 1.654e�3 3.637e�3 6.785e�3 0.013312 0.019895 0.026493 0.033096
P 2.407e�3 3.831e�3 6.223e�3 0.011555 0.017069 0.022634 0.028219

InAs In 1.785e�3 4.616e�3 8.742e�3 0.017226 0.025765 0.03432 0.04288
As 1.847e�3 4.114e�3 7.520e�3 0.01465 0.021864 0.029099 0.036344

InSb In 1.958e�3 6.102e�3 0.011711 0.023163 0.034671 0.046194 0.057723
Sb 1.724e�3 5.274e�3 0.010085 0.019926 0.029821 0.039728 0.049642

MgS Mg 2.525e�3 0.011639 0.021684 0.042386 0.063289 0.084248 0.10523
S 2.033e�3 0.015568 0.030296 0.060115 0.090034 0.11998 0.149938

MgSe Mg 2.817e�3 8.918e�3 0.016065 0.031072 0.046298 0.061585 0.076897
Se 1.290e�3 0.012281 0.024229 0.04828 0.07237 0.096469 0.120573

MgTe Mg 4.177e�3 7.855e�3 0.013642 0.026102 0.038812 0.051589 0.064394
Te 1.998e�3 5.696e�3 0.010938 0.021641 0.032395 0.043163 0.053936

ZnS Zn 2.229e�3 3.942e�3 7.046e�3 0.013641 0.020335 0.027053 0.033781
S 2.425e�3 3.504e�3 5.565e�3 0.010258 0.015132 0.020054 0.024997

ZnSe Zn 2.397e�3 4.890e�3 8.938e�3 0.017424 0.026008 0.034617 0.043237
Se 1.808e�3 3.617e�3 6.547e�3 0.012721 0.018976 0.025252 0.031536

ZnTe Zn 2.559e�3 5.895e�3 0.01094 0.021428 0.032014 0.042626 0.053247
Te 1.615e�3 4.194e�3 7.941e�3 0.015648 0.023407 0.031178 0.038955

CdS Cd 2.110e�3 5.610e�3 0.010709 0.021152 0.031653 0.042169 0.052691
S 2.789e�3 5.063e�3 8.628e�3 0.016373 0.024302 0.032282 0.040282

CdSe Cd 2.258e�3 6.928e�3 0.013343 0.02642 0.039555 0.052706 0.065862
Se 2.090e�3 5.380e�3 0.010064 0.019753 0.029524 0.039316 0.049116

CdTe Cd 1.652e�3 3.516e�3 6.516e�3 0.012766 0.019075 0.025398 0.031727
Te 1.602e�3 3.631e�3 6.804e�3 0.013374 0.019995 0.026629 0.033268

C C 1.611e�3 1.626e�3 1.690e�3 1.986e�3 2.436e�3 2.962e�3 3.529e�3
Si Si 2.471e�3 3.196e�3 4.865e�3 8.772e�3 0.01287 0.017022 0.021198
Ge Ge 1.718e�3 3.191e�3 5.665e�3 0.01093 0.01628 0.021653 0.027035



Table 6 lists mean-square displacements computed within the

LDA for the III–V and group IV materials and within the

GGA for the II–VI materials for selected temperatures.

A measurement of the Debye–Waller factors for GaAs by

Stahn et al. (1998) at 287 K supports this finding. They found

static correlation functions hu2ðGaÞi ¼ 0:00844 Å
2

and

hu2ðAsÞi ¼ 0:00716 Å
2
. Our computation within the LDA

yielded hu2ðGaÞi ¼ 0:00845 Å
2

and hu2ðAsÞi ¼ 0:00726 Å
2
,

and within the GGA hu2ðGaÞi ¼ 0:00927 Å
2

and

hu2ðAsÞi ¼ 0:00779 Å
2

for the temperature at which the

measurement of Stahn et al. (1998) was performed. The

agreement is excellent for the LDA, but deviations are present

for the GGA, which is in agreement with the above statement.

In Table 7 computed Debye–Waller factors are compared with

further measurements and the calculation by Reid (1983).

Using the fit parameters of Gao & Peng (1999), one can

deduce hu2ðGaÞi ¼ 0:00784 Å
2

and hu2ðAsÞi ¼ 0:00844 Å
2
.

Comparing these values with the experimental values suggests

an interchange of the Debye–Waller factors of Ga and As.

However, even in the original paper by Reid (1983), to which

Gao and Peng fitted their temperature dependence, the

Debye–Waller factor of Ga was given to be smaller than that

of As.

5. Summary

In summary, we have computed phonon dispersion curves for

nonpolar group IV and polar II–VI and III–V semiconductors

within a density functional theory approach. To get the LO–

TO splitting for polar semiconductors, we also computed Born

effective charges and dielectric constants within a density

functional perturbation theory approach. The calculated

phonon dispersion relations were in good agreement with

measured phonon frequencies taken from the literature. The

Debye–Waller factors were then derived from generalized

phonon densities of states. Subsequently an accurate fitting

function was derived for the temperature dependence of the

Debye–Waller factor using a temperature-dependent char-

acteristic frequency.
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